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DETE~INATION OF THE EQUILIBRIUM SHAPE OF THE BODIES FORMED DURING THE 
SOLIDIFICATION OF FILTRATION FLOW* 

K.G. KORNBV and V.A. CHUGUNOV 

It is shown that the problem of determining the equilibrium shape of the 
bodies formed when a filtration flow solidifies, can be reduced to the 
Riemann problem with shear. A solitary body is used as an example, and 
an algorithms for determining its boundary is constructed and realized. 
The qualitative properties of the solution of the problem in question 
are studied. 

1. Formulation of the problem. The method of freezing water-laden rocks is widely 
used in building various types of constructions /l/. The process of solidifying a filtration 
flow around a cold source is characterized by the fact that after a time a thermal balance is 
reached. The heat flux densities at the phase boundary become equal, and this means that the 
rate of formation of the solid becomes equal to zero. Thus the shape of the solid formed 
when the filtrationflowsolidifies reaches, in time, its limiting form, which we shall call 
the equilibrium form. 

If we assume that the process takes place in the plane z=z+iy, that the filtration 
obeys D'Arcy's law, that the fluid is incompressible and that the thermophysical character- 
istics of the filtering medium are constant, the mathematical model of the phenomenon in 
question can be represented in the form 

v = -kVp, div v = 0, K,vVt = u+At ZE D if.11 
At8 = 0, z E Dk 

v-+v,, \t+t,, IzI-+oo (1.2) 

li+&!&z = h_&,J&z, t = t, = t,, z E 8D; (1.3) 
t, = t,, < t,, 2 E rb (1.4) 

Here D is the region of filtration, & is the region occupied by the solid, a& is 
its boundary, v is the rate of filtration, p is pressure, k is the coefficient of filtration, 
t, tk are the temperatures in the region D and & respectively, K, is the ratio of the 
heat capacities of the liquid and the filtering medium, .h+, h_ are the thermal conduc- 
tivities in the regions D and Db respectively, a, is the thermal diffusivity in D, n is the 
normal to the surface 8Dkr external with respect to the region Dk, t, is the temperature at 
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which the flow solidifies, t,, v, is the temperature and velocity at the point at infinity, 
and rk is a given surface on which a given temperature t, < t, is maintained. 

It should be noted that all subsequent arguments remain valid if instead of (1.4) we 
specify the intensity of the cold source. 

2. Passage to the Riemann problem with shear. The first two equations of (1.1) 
enable us to introduce, in a standard manner, the complex potential of the flow IV = cp L i+ 
where '[m is the velocity potential and 'p = Ap,Q is the stream function. 

Let us applytheBoussinesq transformation to the third equation of (l.l), which is 
equivalent to a conformal mapping of the physical z plane onto the potential W plane. The 
solids formed in the z plane will have corresponding cuts in the W plane, parallel to the 

cp axis. This simplifies the equation in question, and the determination of the temperature 
reduces to solving the problem 

1) 
K at -A- 
a+ Jv 

t--ttcm, lWl+w (2. 
t = t,, WELk, Lk = p (Q= 2C’ki 9 E Lax- bkl) 

The parameters a,, b, are governed by the values of the velocity potential cp at the 
critical points of the streamlined bodies. It should be noted that when ah.> bb are specified, 
system (2.1) becomes closed by the last equation. Using (l.l), we introduce the complex heat 
potential WI, = --t, + iqr where $\lk is a function of the heat flux. Then the first condition 
of (1.3) on the unknown boundary a& will be transformed to 

h, / h_ 1 cYt’@ I[ dWldz 1 L= 1 dWkidz 1 (2.2) 

Iloreover, by virtue of the last two relations of (1.3), we can conclude that the boundary 
ilDI, sought is an isotherm. Therefore, the heat flux density vector will be directed along 

the normal to 8Dk. On the other hand, the curve 80, serves as a stream line, and hence the 

velocity vector is directed along the tangent to 3Dk. 

Taking into account what has been said, and denoting by Ak, Bh. the leading and trailing 
stagnation points of the body, we can write 

arg?$=Rrgfg + (- I,$, 
0 ZE A2, 

tZ= 
i 1’ ZEA~B, 

(2.3) 

Conditions (2.2) and (2.3) enable us to formulate the initial problem in the form of a 

problem of conjugation with discontinuous coefficients on a system of closed contours. Indeed, 

introducing the function 

and taking into account (2.2) and (2.3), we arrive at the following problem: to find the func- 

tions @+, CD- analytic in the regions D and CJ Dk respectively, satisfying the following 
k 

linear relation on the contour L = 1 j 8Dk: 
k 

@- _ G@+, G = i (-1)" @+/A_)\ ati& 1 (2.4) 

and conditions which follow from (1.4). 
It is difficult to solve this problem in the physical plane, sincethe contours on which 

the boundary conditions are specified are not known in advance. We shall therefore employ 

the method of parametrization, which is widely used in the theory of ideal fluid flows /2, 3/. 

Let us consider the plane of canonical variable 61. The lines separating the phases have 

corresponding canonical curves in this plane, whose form is chosen from the point of their 

subsequent suitability. Let us map the region D into the exterior of the corresponding 

contours of the 0 plane. The feasibility of such mapping follows from /4/. We shall denote 

the mapping function by Z+ (a+). We shall map the region Dk into the interior of the 

corresponding contour aQK by means of the function z- (a-). If z E 6’Dk, then on approaching 

this point from region D we have o++ f E aQk and if we approach z from Dk we have w---f 

T) E aQ,. Inthegeneral case 5 + 11. Condition (2.4), however, enablesustoestablishthe relation 

q = rl (8 (whichiscalledshearin/5, 6/). Indeed,wecanrewritecondition (2.4) in the form 

(2.5) 
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Then 

(2.6) 

It is obvious that expression (2.6) defines the shear 9 = q(g). It should be noted that 

the function dWJdo_, dWidw+ can be found using the methods of the theory of jets /2, 3/. 

Thus we have reduced the initial non-linear problem (l.l)-(1.4) to the Riemann problem 

with shear (2.4), (2.6). The method of solving it is discussed in detail in /5, 6/. It 

should be stressed that such transformation does not eliminate the non-linearityoftheproblem, 

it merely transfers it to the process of determinating the parameters connected with the geo- 

metrical and physical characteristics of the problem, which appear when conformal mappings 

are introduced. 

The solution of problem (2.5) yields the required boundary aD, by simple integration 

3. Solidifying of filtration flow around an axial cold source. We shall 

illustrate the above scheme of determining the free boundary using the following specific 

example. 
We place the origin of coordinates of the z plane at the point where the cold source of 

intensity g is situated, and direct the cz axis along the flow. It is clear that in this 

case an isolated solid will form, and therefore k = 1. We reduce system (l.l)-(1.4) to 

dimensionless form by putting /7/ 

x=+, y+, ,=t_ 1 
f,--* 

0 = 2nL(h--t,) 
4 

Pe=K,$ VZ+ 

(1 is the characteristic size of the solid formed and Pe is the Peclet number). Using the 

methods of the theory of dimensions, we establish that 

(3.1) 

We can use the formula (3.1) for preliminary estimations of the size of the body formed. 

We take the o plane as the domain of the canonical variable with unit circle whose 

centre lies at the origin of coordinates (Fig.1 shows the correspondence of these points). 

Then the complex flow potential will be given in canonical variables by the Zhukovskiipotential 

w = a(w+ + l/o+) (3.2) 
where a is a parameter to be determined. The complex heat potential in canonical variables 

can be determined using the methodof singular points /3/ 
WI = - In o- (3.3) 

Problem (2.1) for determining the functions t3 and G (the latter is needed to formulate 

the Riemann problem) takes the form 

pe aeiacp = AB; e+ 1, 1 WI.-+ o. (3.4) 
e = 0, w E Lo = (v = 0, cp E 1-2~, 2dj 

A solution of this problem exists and can be obtained in the form of series in terms of 
Mathieu and Airy functions /8, 9/. 

ti 6fi 
A D 8 A 8 8 

Fig.1 Fig.2 



776 

It is worth noting here that problem (3.4) is equivalent to the integral equation /7, 8/ 

'i=~~II!:)Ku(aI'nla-%:)exy/--Pi'e(%-l))dE fZ.+j) 

FL= 2a 
-2/s_o,F=*“i. 1=-E- 

where (K,(z) is the MacDonald function. Analysis of this equation yields the following 
asymptotic formulas (y is Euler's constant) /7, lo/ 

(3.7) 

Calculations show that formula (3.7) can be used over a wide range of variation of the 
parameter 6. 

The equation for determining the quantity a follows from the equation of heat balance. 
Indeed, the amount of heat absorbed by the source must be equal to the amount of heat taken 
from the boundary bD,. Therefore, if we use the boundary conditions on aDI, then 

Passing in the given interval to coordinates (9,q and recalling the definition of the 
function p{(6), we can transform the last relation to the form 

I 
(3.8) 

i.e. we obtain the equation fortheunknown p. 
Using the maximum principle for the problem of the type (3.4) /11/ and equation (3.5), 

we can show that the integralon the left-hand side of expression (3.8) is a monotonically 
increasing function of the parameter p. Moreover, from (3.6) and (3.7) it follows that the 
magnitude of this integral approaches zero as b-0, and infinity as ~300. Thus Cqs.(3.8) 
has a unique solution for the parameter j3 for any values of n JK. Knowing the parameter 

BT we can also find the quantity a = fi,Pe. 
We use formula (2.6) to determine the shear 

f (t) = fp (cost)/~‘iG 

where the plus sign is taken when O,<z<n, and the minus sign when n<;t<22n. 
It is clear that the integrand in the third expression of (3.9) is positive within the 

interval [O,Znl in question. Therefore, the relation a = a(u) is monotonic and there 
exists a function inverse to 9 (%)f which we shall denote by ?j-I(%). 

Taking into account (3.2), (3.3) and (3.9), we shall write Eq.‘(2.5) in the form -WA 
is the circle of unit radius) 

7 (tl (E)) = x+ (%)G* (%), % E aQ, (3.10) 

G* (E) = f (a) sin uei(a--o) 

It should be noted that G* (%) = q'(E). 
Thus it is required to determine the function5 X-, X+. analytic inside and outside the 

contour 8Q, respectively, satisfying on &2, the condition (3.10). This the well-known 
Gaseman problem /5, 6/. In the case when G* = q'(E), it has a unique solution given by 



where F (E) is the solution of the Fredholm integral equation 
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(3.11) 

(3.12) 

Having found the functions 7, X', we can write the equation for the unknown boundary 

a&, in quadratures (2.7): 

(3.13) 

Thus we have established that the problem of determining the boundary of a solid formed 
around a single axial cold source, has a unique solution determined by relation (3.3). 
Determining the coordinatesofthe points of the contour in question reduces to solvingEq.(3.12) 
and evaluating the integrals appearing in formulas (3.11) and (3.13). 

The integral Eq.(3.12) was solved using the method of collocations. Fig.2 shows the 
results of the computations carried using the algorithm described above, for Pe = 2,s (the 
solid line). The dashed line is the curve constructed in /12/. We see that the essential 
difference between the contours constructed is the presence of a sharp edge in the boundary 
obtained in /X2/. In fact, experimental data show /13/ that the boundary of the body formed 
should be smooth. The appearance of a sharp edge in the solution in /12/ can be explained 
by the fact that it does not take into account the requirement that the density of heat flux 
at the critical points should be separable from zero /7/. 

4. Estimation of the area occupied by the body formed. The following assertion 
is of help in the operative estimation of the area of the body composed of ice and rock: of 
all bodies bounded by the zero isotherm, with the total heat transfer from the filtration flow 
given, the circle has the largest area. 

The proof of the above assertion is based on the properties of conformal mapping. Let 
us denote by T(a) the function which maps the outside of the solidified body onto the outside 
of a circle of radius r, so that T(oo)= m and dTldzl, = 1. The quantity r is called the outer 
radius of the region in question in the z plane /14/. The outer radius is directly related 
to the length of the cut in the W plane. Indeed, since the relation connecting W with T 
is given by the expression W= T+rVT and the length of the cut in the W plane is equal to 
4a, it obviously follows that r= a. The quantitya,and hence r, can be uniquely determined 
by specifying the rate of heat flow (3.8). We know from the theory of isoperimetric inequal- 
ities /14/ that S<nra, and the equality is attained on a circle, which completes the proof. 

In conclusion we note that in Sect.3 we have considered only one special case. The general 
scheme of determining the equilibrium form of the bodies which form when the filtration flow 
solidifies, presented in this paper, also covers the cases of many bodies. Moreover, the 
scheme makes possible not only the construction of an algorithm for determining the unknown 
boundaries, but it also helps to determine a number of qualitative properties of the solution 
of the problem in question. 
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MULTIMODE BIFURCATIONS OF ELASTIC EQUILIBRIA* 

YU.1. SAPRONOV 

Conservative elastic systems with parallelepiped symmetry are considered, for which a 

study of the postcritical equilibria reduces (by the Lyapunov-Schmidt method) to the analysis 

of extremals of functions of the form 

W(II, ..,.Tn,h) = TUj(h)Zj2 + Zhi,j+l*zja + . 

where J~=(hi,J is a symmetric matrix with non-degenerate principle (diagonal) minors. A 

relationship is written down for which the matrix H is determined by Ritz approximations of 

the total energy functional constructed by means of the fundamental bifurcation modes. In the 
case of soft buckling and for indH= 0 or n- l(ind is the number of negative eigenvalues 

taking multiplicity into account) all the allowable types and quantities of bifurcating stable 
equilibriums are listed. It is shown that after soft buckling with breaking of symmetry, 

cagcade bifurcations are possible (cascade bifurcations simulate the postcritical series of 

snappings accompanied by a drop in the load /l, 2/). Two known examples of soft buckling and 

one new example of hard buckling are presented for illustration. 

Multimode bifurcations of elastic equilibria were investigated on the basis of a vari- 

ational (energetic) principle within the framework of problems of the postcritical behaviour 

of elastic systems /l-3/. The fundamental achievements are obtained here under the influence 

of the theory of singularities of smooth functions /4, 5/ and ideas associated with the sym- 

metry condition (equivalence of equilibrium equations relative to the action of a group in 

configuration space) /6-lo/. It should be noted that the majority of the results associated 

with equivalence with respect to a continuous group are obtained by reduction (factorization 

by means of the group action orbits) to a single-mode bifurcation. 

The oft-encountered symmetry of a parallelepiped (equivalence with respect to the action 

of a group (Z,>“=&Z, . . . x 2,)) results in the analysis of a function that is even in each 

variable, or equivalently, in the analysis of a function inacone R+"=(zER"~z~>Ol /3, 10, 

ll/. Up to now, bimodal bifurcations (with the symmetry of a rectangle) reducible to an 

analysis of functions of the form /5, 12/ q,t,* + alzIa + I~* + DS~*I~~ + s,', aa # 4 have been investi- 

gated practically completely. In the case of n modes (n > 31, it has been established for 

bifurcations reducible to the analysis of functions of the form (a,~)+(Hy,y)f . . . . y= (zla,..., 
z,,‘)~ (under the condition of degeneracy of the principal minors of H) that the number of orbits 
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